Treatment Patterns for Severe Aortic Stenosis in a Large Community-based Health System

Daniel Spoon, MD¹

Roshanthi Weerasinghe², Mary Imboden³, Manaswini Nagaraj², Amy Parrish², Ty J Gluckman³, Daniel Spoon¹

- 1. International Heart Institute Providence St. Patrick Medical Center, Missoula Montana
- 2. Providence Health Research Accelerator, Portland, Oregon
- 3. Center for Cardiovascular Analytics, Research and Data Science, Portland Oregon

Disclosure of Relevant Financial Relationships

Within the prior 24 months, I have had a relevant financial relationship with a company producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients:

Nature of Financial Relationship

Grant/Research Support Consultant Fees/Honoraria Individual Stock(s)/Stock Options Royalties/Patent Beneficiary Executive Role/Ownership Interest Other Financial Benefit

Ineligible Company

Edwards Lifesciences None None None None None

All relevant financial relationships have been mitigated. Faculty disclosure information can be found on the app

Background

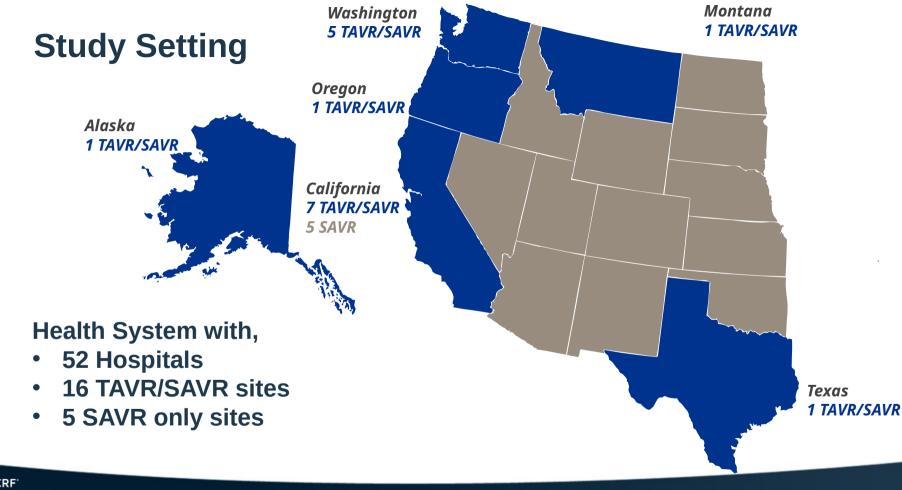
Background: Symptomatic severe aortic stenosis (SAS) carries a poor prognosis if untreated. While surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR) have been shown to improve outcomes in this population, they remain underutilized.

Study Design

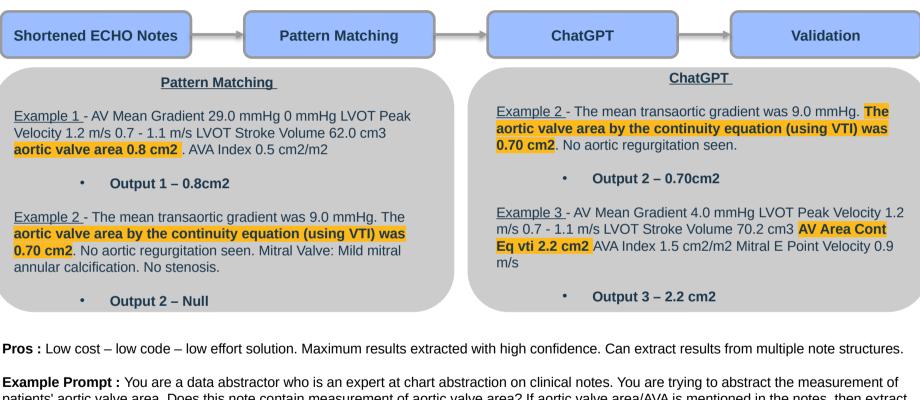
STUDY POPULATION

- Retrospective cohort of patients without prior aortic valve (AV) intervention that had an AV area ≤1.0 cm2 by echocardiography(ECHO) between 2017 and 2022.
- Patients who were pregnant during the study period, had missing LVEF or Mean aortic valve gradient were excluded.

PRIMARY ENDPOINT

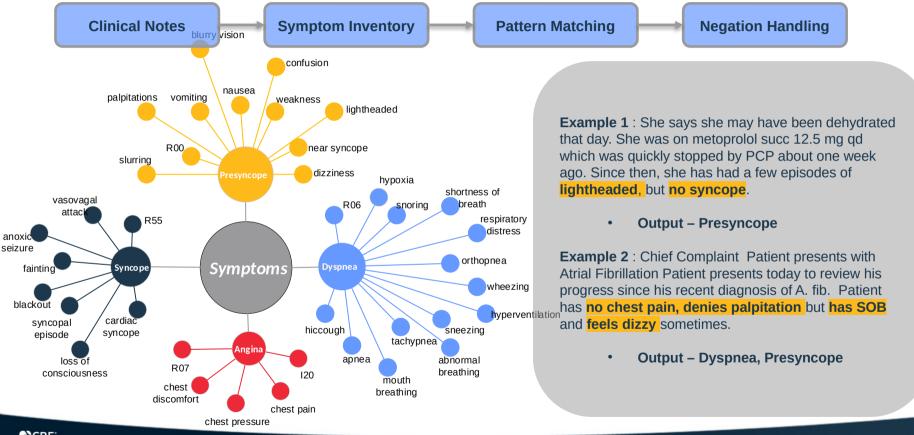

 Treatment intervention rates in patients who met ACC/AHA class 1 indicated/recommended guidelines for severe aortic stenosis (SAS)

Methods


- Aortic Valve Area (AVA), Left ventricular ejection fraction (LVEF), stroke volume, and mean AV gradient were derived from structured and unstructured ECHO data using natural language processing (NLP), and generative artificial intelligence (AI).
- Patients index SAS event was defined as the first ECHO with an AVA \leq 1.0 cm²
- ICD-10 diagnosis codes and NLP were used to determine if symptoms of SAS (e.g., angina, dyspnea, syncope, pre-syncope) were present within 30 days of the index echocardiogram.
- ICD-10 procedure codes, evidence of a prosthetic AV on follow-up echocardiography, and clinical documentation were used to determine whether AVR (TAVR or SAVR) had been performed after the index SAS diagnosis.

CRF'

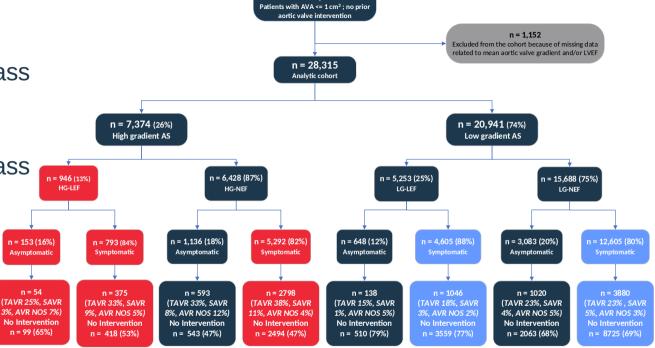
Feature Extraction – Pattern Matching + ChatGPT



Pros: Low cost – low code – low effort solution. Maximum results extracted with high confidence. Can extract results from multiple note structures.

patients' aortic valve area. Does this note contain measurement of aortic valve area? If aortic valve area/AVA is mentioned in the notes, then extract all the measurements and its units you find in the patient note regarding the aortic valve area verbatim.

CRF'


Symptom extraction - Pattern Matching

Patient Consort Diagram

Treatment rate was 52% for pts with a class 1 indication

Treatment rate was
29% for pts with a class
1 recommendation

n = 29.467

HG-LEF=mean aortic valve gradient ux6mm Hg and LVEF <50%, HG-NEF=mean aortic valve gradient ux6mm Hg and LVEF up64, LG-LEF=mean aortic valve gradient <40 mm Hg and LVEF <50%, LG-NEF=mean aortic valve gradient <40 mm Hg and LVEF up64

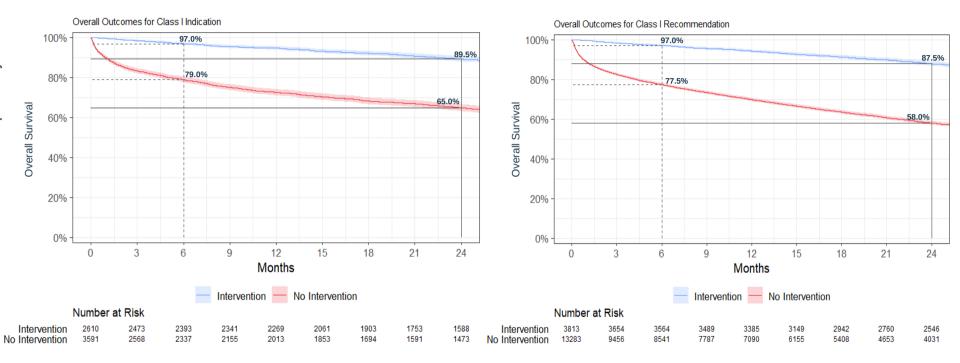
AHA/ACC Indication for AVR Class I Indication

AHA/ACC Indication for AVR Class I Recommendation

AS=aortic stenosis, AVA=aortic valve area, AVR=aortic valve replacement, HG-LEF=high gradient with low ejection fraction, HG-NEF=high gradient with normal ejection fraction, LG-LEF=low gradient with low ejection fraction, LG-NEF=low gradient with normal ejection fraction, LVEF=left ventricular ejection fraction, NOS=not otherwise specified, SAVR=surgical aortic valve replacement, TAVR=transcatheter aortic valve replacement

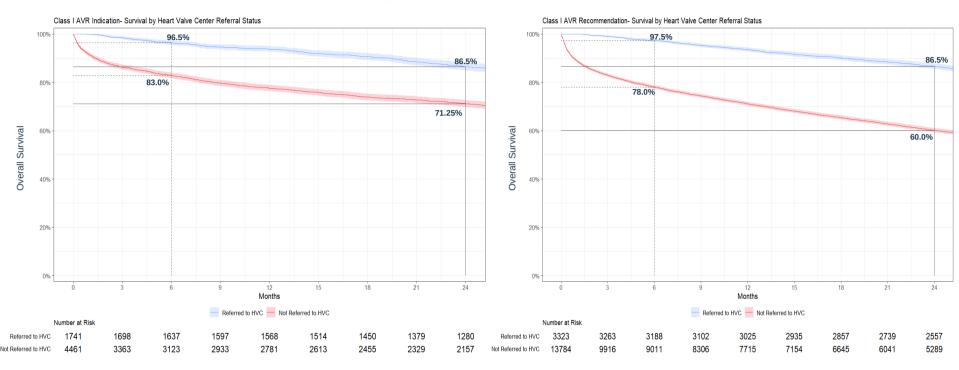
SAS Patient Characteristics

	Overall (N=28315)	AVR (N=9904)	No AVR (N=18411)	P-Value
AHA/ACC Class I				< 0.001
AVR Indication	6238 (22.0%)	3227 (51.7%)	3011 (48.3%)	
AVR Recommendation	17210 (60.8%)	4926 (28.6%)	12284 (71.4%)	
SAVR	1799 (6.4%)	1799 (100%)	0 (0%)	NA
TAVR	5483 (19.4%)	5483 (100%)	0 (0%)	NA
Age (years) Median [Min, Max]	80 [19, 108]	77 [19, 101]	82[19, 108]	<0.001
Female	14692 (51.9%)	4353 (29.6%)	10339 (70.4%)	< 0.001
Race				< 0.001
Black or African American	925 (3.3%)	104 (11.2%)	821 (88.8%)	
White	22820 (80.6%)	8801 (38.6%)	14019 (61.4%)	
Other	4570 (16.1%)	999 (21.9%)	3571 (78.1%)	
Ethnicity				< 0.001
Hispanic/Latino	1768 (6.2%)	407 (23.0%)	1361 (77.0%)	
Not Hispanic/Latino	24871 (87.8%)	9193 (37.0%)	15678 (63.0%)	
Unknown	1676 (5.9%)	304 (18.1%)	1372 (81.9%)	
Urban or Rural Residence				< 0.001
Rural	1877 (6.6%)	813 (43.3%)	1064 (56.7%)	
Urban	25809 (91.1%)	8856 (34.3%)	16953 (65.7%)	



SAS Patient Characteristics

	Overall (N=28315)	AVR (N=9904)	No AVR (N=18411)	P-Value
Insurance Type				< 0.001
Public (Medicare/Medicaid)	21528 (76.0%)	7662 (35.6%)	13866 (64.4%)	
Commercial	1239 (4.4%)	534 (43.1%)	705 (56.9%)	
Other	5548 (19.6%)	1708 (30.8%)	3840 (69.2%)	
Hematocrit Median [Min, Max]	36.7 [12.6, 59.9]	38.6 [12.6, 59.9]	35.4 [13.0, 59.9]	<0.001
Comorbidities				
CCI Median [Min, Max]	6.00 [0, 23.0]	5.00 [0, 19.0]	6.00 [0, 23.0]	<0.001
Diabetic	8139 (28.7%)	2597 (31.9%)	5542 (68.1%)	< 0.001
Coronary Artery Disease	9215 (32.5%)	3137 (34.0%)	6078 (66.0%)	0.0195
Chronic Kidney Disease	7742 (27.3%)	1884 (24.3%)	5858 (75.7%)	< 0.001
Smoker	11174 (39.5%)	4186 (37.5%)	6988 (62.5%)	< 0.001
ECHO Setting				< 0.001
IP	14173 (50.1%)	3073 (21.7%)	11100 (78.3%)	
OP	13668 (48.3%)	6602 (48.3%)	7066 (51.7%)	
Ordering Provider Gender				< 0.001
Female	9051 (32.0%)	2910 (32.2%)	6141 (67.8%)	
Male	17985 (63.5%)	6574 (36.6%)	11411 (63.4%)	
Ordering Provider Specialty				< 0.001
Cardiology	12295 (43.4%)	5468 (44.5%)	6827 (55.5%)	
Hospitalist	851 (3.0%)	160 (18.8%)	691 (81.2%)	
Internal Medicine	9767 (34.5%)	2655 (27.2%)	7112 (72.8%)	



Survival by Intervention Status for Class 1 Patients

€ TC1

Survival by HVC Referral Status

♥ CRF[®] TCT

Discussion

- Comprehensive and contemporary view of AVR for sAS in a large multi-state community healthcare system
- Gaps in delivery of intervention was observed by
 - Race and ethnicity of patients
 - ECHOs conducted in the OP setting led to more AVR
 - ECHO ordered by non-cardiac specialties
- Comorbidities of CKD and a higher Charlson Comorbidity Index were associated with less likelihood of treatment intervention.
- We propose a plan to increase referrals to heart valve clinics

